Glutamine deamidation and dysfunction of ubiquitin/NEDD8 induced by a bacterial effector family.

نویسندگان

  • Jixin Cui
  • Qing Yao
  • Shan Li
  • Xiaojun Ding
  • Qiuhe Lu
  • Haibin Mao
  • Liping Liu
  • Ning Zheng
  • She Chen
  • Feng Shao
چکیده

A family of bacterial effectors including Cif homolog from Burkholderia pseudomallei (CHBP) and Cif from Enteropathogenic Escherichia coli (EPEC) adopt a functionally important papain-like hydrolytic fold. We show here that CHBP was a potent inhibitor of the eukaryotic ubiquitination pathway. CHBP acted as a deamidase that specifically and efficiently deamidated Gln40 in ubiquitin and ubiquitin-like protein NEDD8 both in vitro and during Burkholderia infection. Deamidated ubiquitin was impaired in supporting ubiquitin-chain synthesis. Cif selectively deamidated NEDD8, which abolished the activity of neddylated Cullin-RING ubiquitin ligases (CRLs). Ubiquitination and ubiquitin-dependent degradation of multiple CRL substrates were impaired by Cif in EPEC-infected cells. Mutations of substrate-contacting residues in Cif abolished or attenuated EPEC-induced cytopathic phenotypes of cell cycle arrest and actin stress fiber formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural mechanism of ubiquitin and NEDD8 deamidation catalyzed by bacterial effectors that induce macrophage-specific apoptosis.

Targeting eukaryotic proteins for deamidation modification is increasingly appreciated as a general bacterial virulence mechanism. Here, we present an atomic view of how a bacterial deamidase effector, cycle-inhibiting factor homolog in Burkholderia pseudomallei (CHBP), recognizes its host targets, ubiquitin (Ub) and Ub-like neural precursor cell expressed, developmentally down-regulated 8 (NED...

متن کامل

The molecular basis of ubiquitin-like protein NEDD8 deamidation by the bacterial effector protein Cif.

The cycle inhibiting factors (Cifs) are a family of translocated effector proteins, found in diverse pathogenic bacteria, that interfere with the host cell cycle by catalyzing the deamidation of a specific glutamine residue (Gln40) in NEDD8 and the related protein ubiquitin. This modification prevents recycling of neddylated cullin-RING ligases, leading to stabilization of various cullin-RING l...

متن کامل

Gln40 deamidation blocks structural reconfiguration and activation of SCF ubiquitin ligase complex by Nedd8

The full enzymatic activity of the cullin-RING ubiquitin ligases (CRLs) requires a ubiquitin-like protein (that is, Nedd8) modification. By deamidating Gln40 of Nedd8 to glutamate (Q40E), the bacterial cycle-inhibiting factor (Cif) family is able to inhibit CRL E3 activities, thereby interfering with cellular functions. Despite extensive structural studies on CRLs, the molecular mechanism by wh...

متن کامل

The Molecular Basis for Ubiquitin and Ubiquitin-like Specificities in Bacterial Effector Proteases

Pathogenic bacteria rely on secreted effector proteins to manipulate host signaling pathways, often in creative ways. CE clan proteases, specific hydrolases for ubiquitin-like modifications (SUMO and NEDD8) in eukaryotes, reportedly serve as bacterial effector proteins with deSUMOylase, deubiquitinase, or, even, acetyltransferase activities. Here, we characterize bacterial CE protease activitie...

متن کامل

Activation of MAPK/ERK signaling by Burkholderia pseudomallei cycle inhibiting factor (Cif)

Cycle inhibiting factors (Cifs) are virulence proteins secreted by the type III secretion system of some Gram-negative pathogenic bacteria including Burkholderia pseudomallei. Cif is known to function to deamidate Nedd8, leading to inhibition of Cullin E3 ubiquitin ligases (CRL) and consequently induction of cell cycle arrest. Here we show that Cif can function as a potent activator of MAPK/ERK...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 329 5996  شماره 

صفحات  -

تاریخ انتشار 2010